Intimidating eratic driving

The student is expected to: (A) recognize that seasons are caused by the tilt of Earth's axis; (B) explain how latitudinal position affects the length of day and night throughout the year; (C) recognize that the angle of incidence of sunlight determines the concentration of solar energy received on Earth at a particular location; and (D) examine the relationship of the seasons to equinoxes, solstices, the tropics, and the equator.

The student knows that planets of different size, composition, and surface features orbit around the Sun.

Erratic behavior is a powerful weapon because it defies accurate prediction.

The student is expected to: (A) demonstrate basic principles of fluid dynamics, including hydrostatic pressure, density, salinity, and buoyancy; (B) identify interrelationships between ocean currents, climates, and geologic features; and (C) describe and explain fluid dynamics in an upwelling and lake turnover.

The student knows the types and components of aquatic ecosystems.

The student is expected to: (A) classify different aquatic organisms using tools such as dichotomous keys; (B) compare and describe how adaptations allow an organism to exist within an aquatic environment; and (C) compare differences in adaptations of aquatic organisms to fresh water and marine environments.

The student knows about the interdependence and interactions that occur in aquatic environments.

The student is expected to: (A) observe and record the apparent movement of the Sun and Moon during the day; (B) observe and record the apparent movement of the Moon, planets, and stars in the nighttime sky; and (C) recognize and identify constellations such as Ursa Major, Ursa Minor, Orion, Cassiopeia, and constellations of the zodiac.

The student is expected to: (A) observe and record data about lunar phases and use that information to model the Sun, Earth, and Moon system; (B) illustrate the cause of lunar phases by showing positions of the Moon relative to Earth and the Sun for each phase, including new moon, waxing crescent, first quarter, waxing gibbous, full moon, waning gibbous, third quarter, and waning crescent; (C) identify and differentiate the causes of lunar and solar eclipses, including differentiating between lunar phases and eclipses; and (D) identify the effects of the Moon on tides.Unlike hypotheses, scientific theories are well-established and highly-reliable explanations, but may be subject to change as new areas of science and new technologies are developed; (D) distinguish between scientific hypotheses and scientific theories; (E) plan and implement investigative procedures, including making observations, asking questions, formulating testable hypotheses, and selecting equipment and technology; (F) collect data and make measurements with accuracy and precision; (G) organize, analyze, evaluate, make inferences, and predict trends from data, including making new revised hypotheses when appropriate; (H) communicate valid conclusions in writing, oral presentations, and through collaborative projects; and (I) use astronomical technology such as telescopes, binoculars, sextants, computers, and software.The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom.Students who successfully complete Aquatic Science will acquire knowledge about a variety of aquatic systems, conduct investigations and observations of aquatic environments, work collaboratively with peers, and develop critical-thinking and problem-solving skills.Science, as defined by the National Academy of Sciences, is the "use of evidence to construct testable explanations and predictions of natural phenomena, as well as the knowledge generated through this process." This vast body of changing and increasing knowledge is described by physical, mathematical, and conceptual models.Some people go to extraordinary lengths to be difficult.

Tags: , ,